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Network Stress TestingNetwork Stress Testing
•• Stress all of the UCLAStress all of the UCLA--developed networks. developed networks. 

•• IndividuallyIndividually
•• As an integrated networked systemAs an integrated networked system

•• Stress each of these networks to the limit:Stress each of these networks to the limit:
•• Traffic loadTraffic load
•• Traffic matrixTraffic matrix
•• Channel error rateChannel error rate
•• Node failure rateNode failure rate
•• Number of nodesNumber of nodes
•• Number of clustersNumber of clusters
•• Nodal densityNodal density
•• Nodal separationNodal separation
•• Nodal and cluster mobilityNodal and cluster mobility
•• Malicious attacksMalicious attacks
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•• We measureWe measure
•• Response timeResponse time
•• ThroughputThroughput
•• QoSQoS
•• Fraction of delivered packetsFraction of delivered packets
•• JitterJitter
•• Recovery timeRecovery time
•• DeadlocksDeadlocks

•• Use of simulation as well as actual Use of simulation as well as actual 
hardware is used for these tests.hardware is used for these tests.

Network Stress TestingNetwork Stress Testing
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AdHocAdHoc Network ScenariosNetwork Scenarios

1. Clusters with Random Search1. Clusters with Random Search
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2.  Clusters with Patrolling2.  Clusters with Patrolling

AdHocAdHoc Network ScenariosNetwork Scenarios
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3. Sneaking 3. Sneaking 
(back and forth after the examination of some zone)(back and forth after the examination of some zone)

AdHocAdHoc Network ScenariosNetwork Scenarios
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Traffic MatricesTraffic Matrices

Hot Spot trafficHot Spot trafficRandom Random 
destinationsdestinations

Multicast trafficMulticast traffic
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LANMAR Network ResultsLANMAR Network Results
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LANMAR Network ResultsLANMAR Network Results
Internal and Group MobilityInternal and Group Mobility
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Hilly Landscape ModelHilly Landscape Model

•• Nodes are randomly distributed in a square area Nodes are randomly distributed in a square area 
(1000m x 1000m) with antennae height at 0.5 m.(1000m x 1000m) with antennae height at 0.5 m.

•• “Hills” are located, one in each 50m x 50m. (400 hills in “Hills” are located, one in each 50m x 50m. (400 hills in 
total)total)

•• Hill height has a lognormal distribution Hill height has a lognormal distribution 
•• sigma  0.5 => 0.5 m average heightsigma  0.5 => 0.5 m average height
•• sigma  5.0 => 5.0 m average height sigma  5.0 => 5.0 m average height 

•• Propagation model: Path LossPropagation model: Path Loss
•• Slightly pessimistic for high hills since a path loss model Slightly pessimistic for high hills since a path loss model 

assumes that the radio signal does not reach the destination in assumes that the radio signal does not reach the destination in 
presence of an obstacle whereas in the real world, the radio presence of an obstacle whereas in the real world, the radio 
signal would go around  the hill.signal would go around  the hill.



Leonard Kleinrock 2005

LANMAR ScenarioLANMAR Scenario
•• Nodes: 45Nodes: 45

•• In motion: 30 (Random Waypoint)In motion: 30 (Random Waypoint)
•• 4 clusters (simulation area split into 4 squares)4 clusters (simulation area split into 4 squares)

•• Connections: 54Connections: 54
•• 45 45 intraclusterintracluster
•• 9   9   interclusterintercluster
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LANMAR Landscape ResultsLANMAR Landscape Results
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ODMRP ScenarioODMRP Scenario
•• Nodes: 45Nodes: 45

•• In motion: 30 (Random Waypoint)In motion: 30 (Random Waypoint)
•• Connections: Connections: 

•• Source: 1Source: 1
•• Destinations: 20Destinations: 20
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Malicious Attack on LANMARMalicious Attack on LANMAR
•• Nodes: 45Nodes: 45

•• In motion: 30 (Random Waypoint). In motion: 30 (Random Waypoint). 
•• 4 clusters4 clusters
•• Motion at 1 Motion at 1 m/sm/s..

•• Connections: 54Connections: 54
•• Worst case scenarioWorst case scenario

•• The enemy knows always which the landmarks The enemy knows always which the landmarks 
areare

•• For a fair comparison, in the simulation, For a fair comparison, in the simulation, 
landmarks are not killed but they are forced to landmarks are not killed but they are forced to 
drop their role as landmarks.drop their role as landmarks.



Leonard Kleinrock 2005

Malicious Attack: LANMARMalicious Attack: LANMAR
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Malicious Attack on ODMRPMalicious Attack on ODMRP
•• Nodes: 45Nodes: 45

•• In motion: 30 (Random Waypoint). In motion: 30 (Random Waypoint). 
•• Motion at 1 Motion at 1 m/sm/s..

•• Connections:Connections:
•• Source: 1Source: 1
•• Destinations: 20Destinations: 20

•• Worst case scenarioWorst case scenario
•• The enemy knows always which the The enemy knows always which the 

forwarding nodes are;forwarding nodes are;
•• For a fair comparison, in the simulation, For a fair comparison, in the simulation, 

forwarding nodes are not killed but they are forwarding nodes are not killed but they are 
forced to drop their role as forwarding nodes.forced to drop their role as forwarding nodes.
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Malicious Attack: ODMRPMalicious Attack: ODMRP
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The Sensor NetThe Sensor Net
•• The network is a grid of sensors ( 1 m. distance).The network is a grid of sensors ( 1 m. distance).
•• The system cannot locate targets if two targets The system cannot locate targets if two targets 

are in range of the same sensor.are in range of the same sensor.
•• Total time of computation and transmission back Total time of computation and transmission back 

to the gateway node is computed.to the gateway node is computed.
•• No errors on the channel are considered.No errors on the channel are considered.
•• The network is stationary.The network is stationary.
•• GeoRoutingGeoRouting..
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Metrics for the Sensor NetMetrics for the Sensor Net

1.1. Error in localizing the targetsError in localizing the targets
•• The error is the distance between: The error is the distance between: 

•• the actual location of the target when the the actual location of the target when the 
backbone receives the information, andbackbone receives the information, and

•• the location contained in the information the location contained in the information 
that the backbone receives. that the backbone receives. 

2.2. Time required to get the information Time required to get the information 
back to the backbone.back to the backbone.
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Sensor Net: Linear MotionSensor Net: Linear Motion
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Sensor Net: Random MotionSensor Net: Random Motion
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Network Network Resilience Resilience 
to Stress and Attackto Stress and Attack

•• We have developed a distributed approach We have developed a distributed approach 
to improve the performance of the AINS to improve the performance of the AINS 
program, with special focus on the program, with special focus on the 
networking elements.  networking elements.  

•• It provides a mechanism for implementing It provides a mechanism for implementing 
improved resilience and provides a improved resilience and provides a 
greater degree of robustness to dynamic greater degree of robustness to dynamic 
conditions.conditions.

•• The main application is to provide a level The main application is to provide a level 
of increased network resilience to stress of increased network resilience to stress 
and attack.and attack.
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Adaptive Autonomous NetworksAdaptive Autonomous Networks

•• We must develop systems whose components We must develop systems whose components 
are capable of independent cooperative are capable of independent cooperative 
adaptive autonomous action in unpredictable adaptive autonomous action in unpredictable 
environments.environments.

•• Large collections of these entities will be Large collections of these entities will be 
deployed in a distributed environmentdeployed in a distributed environment

•• Scalable solutions should be designed withScalable solutions should be designed with
•• Shared awarenessShared awareness
•• CollaborationCollaboration
•• SynchronizationSynchronization
•• UnderstandingUnderstanding



Leonard Kleinrock 2005

An Example An Example 
Scenario Scenario 

of Autonomous Operationof Autonomous Operation
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Properties of Our AlgorithmProperties of Our Algorithm
•• The approach is based on a distributed The approach is based on a distributed 

algorithm called the algorithm called the GurGur Algorithm.   Algorithm.   
•• This is a basic research effort at its core.This is a basic research effort at its core.
•• The basic properties of this algorithm are:The basic properties of this algorithm are:

•• Highly distributedHighly distributed
•• Each node operates almost independently and Each node operates almost independently and 

autonomouslyautonomously
•• Uses only a minimal amount of global knowledgeUses only a minimal amount of global knowledge
•• Uses a nonUses a non--procedural approach, i.e., one procedural approach, i.e., one 

describes a goal and leaves the methodology up to describes a goal and leaves the methodology up to 
the algorithm; i.e., it provides for ease of control.the algorithm; i.e., it provides for ease of control.

•• Extremely robustExtremely robust
•• Highly dynamicHighly dynamic
•• Highly scalableHighly scalable
•• Highly flexibleHighly flexible
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Vote YES

How It Works

Vote NO

1 2 3 4 5-5 -1-3-4 -2

p p p p
p

1-p 1-p 1-p 1-p1-p

p p p p

p

1-p1-p 1-p 1-p 1-p
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ApplicationsApplications

•• Power controlPower control
•• Uniform coverage in sensor netsUniform coverage in sensor nets
•• Uniform energy expenditure in sensor netsUniform energy expenditure in sensor nets
•• Redeployment of scarce resourcesRedeployment of scarce resources
•• Dynamic configuration of swarmsDynamic configuration of swarms
•• MultiMulti--access communicationsaccess communications
•• Maintenance of zero acceleration bodies Maintenance of zero acceleration bodies 

subject to arbitrary forcessubject to arbitrary forces
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The The GurGur Game:  Game:  
ModificationsModifications

•• Different memory structuresDifferent memory structures
•• How does it work?How does it work?

•• Transitions?Transitions?
•• Voting?Voting?
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QoSQoS Control For Sensor Control For Sensor 
NetworksNetworks

•• Simulation 1:  no birth/death, no delay, run Simulation 1:  no birth/death, no delay, run 
for 2000 for 2000 secssecs
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QoSQoS Control For Sensor Control For Sensor 
NetworksNetworks

•• Simulation 2:  delays uniformly distributed between 0Simulation 2:  delays uniformly distributed between 0--5, 5, 
mean exp time between births = 101 mean exp time between births = 101 secssecs, mean time , mean time 
between deaths = 100 between deaths = 100 secssecs, run for 10000 , run for 10000 secssecs
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QoSQoS Control For Sensor Control For Sensor 
NetworksNetworks

•• Simulation 3:  Study the effect of the Simulation 3:  Study the effect of the 
memory size N, measure standard memory size N, measure standard 
deviation from optimal, all parameters the deviation from optimal, all parameters the 
samesame
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

Level H

Level 2

Level 1

Level 0

•• Hierarchical structure gives us scalabilityHierarchical structure gives us scalability
•• Serendipitous benefitSerendipitous benefit

•• Better performanceBetter performance
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

Typical Gur Reward Function
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

•• Simulation 1:  Simulation 1:  BaselineBaseline time to convergencetime to convergence
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

•• Simulation 2:  Simulation 2:  Hierarchical Hierarchical Time to Time to 
convergenceconvergence

Hierarchical Gur Game Trace
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The Gur Algorithm
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

•• Simulation 3:  Show time spent in optimum or near Simulation 3:  Show time spent in optimum or near 
optimum states is much higher in Hierarchical than optimum states is much higher in Hierarchical than 
BaselineBaseline
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

•• Simulation 4 and 5:  Study the parameter N Simulation 4 and 5:  Study the parameter N 
(memory size) and its effect on the relative (memory size) and its effect on the relative 
time the system stays in a particular statetime the system stays in a particular state

•• run for 10000 seconds run for 10000 seconds 
•• Study both Hierarchical and BaselineStudy both Hierarchical and Baseline
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

•• Simulation 4:  Simulation 4:  BaselineBaseline
Histogram of Baseline Gur Game vs N

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 .
0 0

0 .
0 5

0 .
1 0

0 .
1 5

0 .
2 0

0 .
2 5

0 .
3 0

0 .
3 5

0 .
4 0

0 .
4 5

0 .
5 0

0 .
5 5

0 .
6 0

0 .
6 5

0 .
7 0

0 .
7 5

0 .
8 0

0 .
8 5

0 .
9 0

0 .
9 5

1 .
0 0

Fraction of Gurs Voting Yes

N=1
N=2
N=3



Leonard Kleinrock 2005

Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

•• Simulation 5:  Simulation 5:  HierarchicalHierarchical
Histogram Of Hierarchical Gur Game vs N
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

•• Simulation 6: Number of hierarchical levelsSimulation 6: Number of hierarchical levels

Histogram of Hierarchical Gur Game
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Scalable Sensor Network Scalable Sensor Network 
ResolutionResolution

•• Simulation 7: Uniform coverageSimulation 7: Uniform coverage

Uniformity of 4-Cell Clusters
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The MathematicsThe Mathematics

•• For peak = 1, guaranteed convergenceFor peak = 1, guaranteed convergence
•• For peak < 1, binomial For peak < 1, binomial vsvs bias by bias by r(fr(f))

•• Find Find p(fp(f), the probability (i.e., fraction of time) ), the probability (i.e., fraction of time) 
of having fraction f vote yes.of having fraction f vote yes.

•• Use State CompressionUse State Compression
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Problem:Problem:
When and how often shouldWhen and how often should

a user update a given piece ofa user update a given piece of
information as it goes furtherinformation as it goes further
and further outand further out--ofof--date?date?

Optimal Update Times forOptimal Update Times for
OutOut--ofof--Date InformationDate Information
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Assumptions:Assumptions:
1)     There is a cost C>0 of updating a1)     There is a cost C>0 of updating a

given piece of information.given piece of information.

2)     There is an expected value per unit 2)     There is an expected value per unit 
timetime

associated with having a piece of associated with having a piece of 
informationinformation

that was updated t time units ago.that was updated t time units ago.
This value is f(t).This value is f(t).

3)     f(t) is monotonically non3)     f(t) is monotonically non--increasing.increasing.
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Example:Example:
A user is accessing a file.A user is accessing a file.
This file is being modified by the system at This file is being modified by the system at 

a a poissonpoisson rate of rate of λλ modifications per unit modifications per unit 
time.time.

The user’s expected value for having the file The user’s expected value for having the file 
at t  time units since his last update equals at t  time units since his last update equals 
the probability that no modifications have the probability that no modifications have 
been made to the file since his copy was been made to the file since his copy was 
sent.sent.

Then f(t)=eThen f(t)=e--λλtt..
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Question:Question:
Given f(t) and C, When andGiven f(t) and C, When and

how often should a user how often should a user 
update a given piece of update a given piece of 
information?information?
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Value Gained Over Multiple Updates
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Funding, etcFunding, etc

•• PostDocPostDoc Gone: Job security an issueGone: Job security an issue
•• GSR working on GSR working on GurGur algorithm at nearalgorithm at near--

zero fundingzero funding



Leonard Kleinrock 2005

$257,572$257,572$221,187$221,187$35,745$35,745YesYesYesYesYesYes55

$163,919$163,919$128,174$128,174$35,745$35,745YesYesNoNoYesYes44

$188,799$188,799$153,054$153,054$35,745$35,745NoNoYesYesYesYes33

$35,745$35,74500$35,745$35,745NoNoNoNoYesYes22

$35,745$35,74500$35,745$35,745NoNoNoNoNoNo11

Total Total 
FundsFunds

ExtraExtra
FundsFunds
NeededNeeded

FundsFunds
AvailAvail
6/30/056/30/05

One One 
GSRGSR

One One 
PostPost
DocDoc

12 Mo12 Mo
ExtensExtens

CaseCase
Budget IssuesBudget Issues
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